
X36SKD
lab

Phonebook

Miroslav Skrbek, Jiří Buček

Machine Code and Data - lab 2

Literature

8-bit AVR® Instruction Set, ATMEL Corporation, 2002.

http://www.atmel.com

[3]

8-bit AVR® Microcontroller width 16K Bytes In-System Programmable
Flash ATmega169. Datasheet. ATMEL Corporation, 2003.

http://www.atmel.com

[4]

AVR Assembler User Guide. ATMEL Corporation, 2002.

http://www.atmel.com

AVR065: LCD Driver for the STK502 and AVR Butterfly. Application

note. ATMEL Corporation, 2004. http://www.atmel.com

[1]

[2]

Machine Code and Data - lab 3

Task

Write a program that implements a phonebook. Use AVR assembler. The program

shall contain a database of names and phone numbers. Every record shall contain

the name (max. 6 characters) and the phone number (max. 6 digits). The records
shall be a read-only, fixed part of the program’s data structures.

The phonebook shall work in two modes:

1. Automatic. The names appear sequentially on the display in one-second intervals,
sorted lexicographically in ascending (descending) order. The ordering direction

shall be controlled using joystick (up/down). Pressing joystick (enter) shall stop the

sequence and the phonebook shall switch to mode 2.

2. Manual. The display contains the last displayed name from mode 1. Horizontal

joystick controls shall switch between name (left) and phone number (right).

Vertical joystick controls shall step through the sequence by one record towards
the beginning (up) or end (down). The stepping is enabled only when the name is

displayed. Pressing joystick (enter) shall switch to mode 1.

Machine Code and Data - lab 4

Database structure

.cseg

database:

.db "NOVAK" ,':',"345678",';', \

"CERNY" ,':',"112334",';', \

"BILY" ,':',"*555" ,';', \

"KRATKY",':',"456111",';', \

"JECH" ,':',"*667" ,';', \

"ZIZKA" ,':',"344443",';',0

End of database

Record delimiter

Phone number

Phone line

Name

Backslash at the end of a line means line continuation. This way, the
declaration can be achieved using only one .db. The same effect could be
accomplished by placing everything on one line. Beware that no character
may appear after the backslash till end of the line, not even whitespace.

This notation had to be used because every .db directive must start at an even

address, and if not (odd number of characters in the preceding record), the
compiler automatically fills a zero character. This would disrupt the designed
database format.

Name delimiter

Machine Code and Data - lab 5

Sorting the database I

First write a program that scans the database and creates an index of

the database in memory. The index is an array of addresses of all

records in the database.
0100h |"N"

0101h |"O"

0102h |"V"

0103h |"A"

0104h |"K"

0105h |":"

0106h |"3"

0107h |"4"

0108h |"4"

0109h |"5"

010Ah |"6"

010Bh |"7"

010Ch |"8"

010Dh |";"

010Eh |"C"

010Fh |"E"

0110h |"R"

0111h |"N"

0112h |"Y"

0113h |":"

0114h |"1"

...

0200h | 00h

0201h | 01h

0202h | 0Eh

0203h | 01h

...

First

element of

index

Second

element of

index

Index in
data memory

Database in
program
memory

Creation of index is a mandatory part of the
solution. Solution where the whole database is

copied into data memory for sorting is considered
wrong. Data memory is significantly smaller than
program memory, therefore copying the database
would be principally limiting.

Adresa

Address

The addresses here are just

examples. The start of the index
and the database will be
determined by labels, therefore
the specific addresses will be
known after compilation.

Write a subprogram
to get the length of

the index

Machine Code and Data - lab 6

Sorting the database II

Let us prepare a subprogram, whose inputs are the addresses of names from two records (record A and B).

The output will be:

• -1 when the name in record A lexicographically precedes the name in record B (i.e. A.name < B.name),

• 0 when A.name is equal to B.name (A.name == B.name)

• 1 when the name in record A succeeds the name in record B (i.e. A.name > B.name).

Comparison algorithm

1. Assign i = 0

2. Compare ASCII codes of the characters at position i from name A (A.name[i]) and from name B

(B.name[i]).

• If A.name[i] < B.name[i], then A.name < B.name and we return -1

• If A.name[i] > B.name[i], then A.name > B.name and we return 1

• If A.name[i] == B.name[i], then repeat step 2 for the next character (i.e.. for i = i + 1).

If we reach end of one of the strings:

• return 1, when A.name is longer than B.name

• return -1, when B.name is longer than A.name

• return 0, when we reached the end of both strings.

Machine Code and Data - lab 7

Sorting the database III

We use Bubble-Sort for sorting the index:

1. Go to the beginning of index

(i.e. the first index element is the current now)

2. From the index, take the current element (A) and the next one (B)

3. If database[A].name > database[B].name, exchange the elements A

and B in the index.

4. Go to the next element (step one element towards the end)

5. If this is not the last element, continue with step 2

6. If there was at least one exchange in step 3, continue with step 1

7. End, the index is now sorted in ascending order

Descending sorting is similar, only change the comparison in step 3 to database[A].name < database[B].name

Machine Code and Data - lab 8

How to display

Sequential display of sorted database:

Go through the index one element at a time. Each element contains the address of one record
in program memory. Get the address and use it to access the name and the number from
the database. Periodic display update in 1 second intervals shall be done using interrupts.

Name and number display:

Create a subprogram whose parameters are – an address of the first character of a string in
program memory, and a delimiter. The subprogram displays the following (max. 6)
characters until the delimiter. You can call the subprogram with the delimiter “:” to display
the name and “;” to display the number.

Access the phone number:

The name always ends with a colon (“:”). To get the number, you know that it follows the name
after the colon. The number always ends with a semicolon (“;”).

We recommend to create a subprogram, whose parameter will be the address of the beginning
of a record. The subprogram will increment the address, until it finds a colon. It will then
return the address + 1, which points directly to the beginning of the number.

